ChE Thermodynamics

Quiz 6 February 20, 2020 (2/20/2020)
Egg albumen is a protein from egg whites. In the egg the protein is in a native (folded) state. It is desired to obtain an unfolded protein without degrading the protein through the use of pressure. Albumen can be completely denatured (unfolded) with a pressure of 100 MPa in the absence of significant heat. The protein is destroyed with a temperature of $120^{\circ} \mathrm{C}$ but it already begins to degrade at $75^{\circ} \mathrm{C}$.

Is it possible to heat a closed container of chloroform from $T_{1}=1^{\circ} \mathrm{C}, p_{1}=0.1 \mathrm{MPa}$ containing egg albumen to generate 100 MPa pressure, thereby denaturing the protein, without heating above $75^{\circ} \mathrm{C}$ and causing degradation (burning)? Using chloroform as the solvent, how much heat will be required per mole of chloroform. Consider a closed container of constant volume containing only chloroform (ignore the protein). FILL OUT THE TABLE ON PAGE 3 AND INCLUDE IT WITH YOUR ANSWERS

For chloroform the following data is available:

$$
\begin{aligned}
& C_{p}=65.8 \mathrm{~J} /(\text { mole K })=(\partial H / \partial T)_{p}=\mathrm{T}(\partial S / \partial T)_{p} \\
& \alpha_{p}=1,270 \times 10^{-6} \mathrm{~K}^{-1}=1 / V(\partial V / \partial T)_{p} \\
& \kappa_{T}=830 \times 10^{-6} \mathrm{MPa}^{-1}=-1 / V(\partial V / \partial P)_{T} \\
& \rho=1.48 \mathrm{~g} / \mathrm{cm}^{3} \\
& M W=119 \mathrm{~g} / \mathrm{mole} \\
& C_{V}=(\partial U / \partial T)_{V}=\mathrm{T}(\partial S / \partial T)_{V}
\end{aligned}
$$

a) Calculate T_{2} by developing an expression for $(\partial \mathrm{p} / \partial T)_{V}$ in terms of the parameters given above using the triple product rule. Is the proposed process possible using chloroform?
b) Find an expression for C_{v} using $C_{p}, \alpha_{p}, \kappa_{T}, T_{1}=274 \mathrm{~K}$ through an expansion of $\mathrm{d} S(T, P)$.

Name the steps vou use, e.g. Maxwell Relation; Definition of $C_{p} ;$ Triple Product; etc.
Get the value for C_{v} for this case (Use $T=274 \mathrm{~K}$; calculate V watch units).
c) Calculate $\Delta S, \Delta U, Q$.
d) Calculate $\Delta \mathrm{H}$ for this constant volume (isochoric) process.

Name the steps you use, e.g. Maxwell Relation; Definition of $C_{p} ;$ Triple Product; etc.

e) Would it be feasible to reach 100 MPa at a temperature below $70^{\circ} \mathrm{C}$ using water?

For water the following data is available:

$$
\begin{aligned}
& C_{p}=33.6 \mathrm{~J} /(\text { mole K })=(\partial H / \partial T)_{p}=\mathrm{T}(\partial S / \partial T)_{p} \\
& \alpha_{p}=210 \times 10^{-6} \mathrm{~K}^{-1}=1 / V(\partial V / \partial T)_{p} \\
& \kappa_{T}=490 \times 10^{-6} \mathrm{MPa}^{-1}=-1 / V(\partial V / \partial P)_{T} \\
& \rho=0.998 \mathrm{~g} / \mathrm{cm}^{3} \\
& M W=18 \mathrm{~g} / \mathrm{mole}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{J T} \equiv\left(\frac{\partial T}{\partial P}\right)_{H} \quad \alpha_{P} \equiv \frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}=\frac{-1}{\rho}\left(\frac{\partial \rho}{\partial T}\right)_{P} \quad \kappa_{T} \equiv \frac{-1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}=\frac{1}{\rho}\left(\frac{\partial \rho}{\partial P}\right)_{T} \\
& (\partial S / \partial T)_{V}=C_{V} / T \quad C_{P} \equiv(\partial H / \partial T)_{P} .
\end{aligned}
$$

Maxwell's Relations

$$
\begin{align*}
& d U=T d S-P d V \Rightarrow-(\partial P / \partial S)_{V}=(\partial T / \partial V)_{S} \\
& d H=T d S+V d P \Rightarrow(\partial V / \partial S)_{P}=(\partial T / \partial P)_{S} \\
& d A=-S d T-P d V \Rightarrow(\partial P / \partial T)_{V}=(\partial S / \partial V)_{T} \\
& d G=-S d T+V d P \Rightarrow-(\partial V / \partial T)_{P}=(\partial S / \partial P)_{T}
\end{align*}
$$

$$
\begin{aligned}
& \left(\frac{\partial x}{\partial y}\right)_{F}\left(\frac{\partial y}{\partial F}\right)_{x}\left(\frac{\partial F}{\partial x}\right)_{y}=-1 \\
& \left(\frac{\partial x}{\partial y}\right)_{F}=\left(\frac{\partial x}{\partial z}\right)_{F}\left(\frac{\partial z}{\partial y}\right)_{F} \\
& \left(\frac{\partial F}{\partial w}\right)_{z}=\left(\frac{\partial F}{\partial x}\right)_{y}\left(\frac{\partial x}{\partial w}\right)_{z}+\left(\frac{\partial F}{\partial y}\right)_{x}\left(\frac{\partial y}{\partial w}\right)_{z}
\end{aligned}
$$

6.15 (1) Triple product rule.
6.17 (The expansion rule.

$$
\left(\frac{\partial x}{\partial y}\right)_{x}=0 \quad \text { and }\left(\frac{\partial x}{\partial y}\right)_{y}=\infty \quad\left(\frac{\partial x}{\partial x}\right)_{y}=1
$$

$$
\mathrm{d} S=\left(C_{v} / T\right) \mathrm{d} T ; \mathrm{d} H=C_{p} \mathrm{~d} T ; \mathrm{d} U=C_{v} \mathrm{~d} T=Q+W_{\mathrm{s}}+W_{\mathrm{EC}}
$$

Thermodynamic Square

$-S$	U	\mathbf{V}
\mathbf{H}		A
$-\mathbf{p}$	\mathbf{G}	\mathbf{T}

Question		Expression	Value	Units
a)	$(\hat{\mathrm{p}} / \bar{C} \mathrm{~T}) \mathrm{V}$			$\mathbf{M P a} / \mathrm{K}$
	T2			${ }^{\circ} \mathrm{C}$
b)	Cv			J/(mole K)
c)	DS			J/(mole K)
	DU			J/mole
	Q			J/mole
d)	DH			J/mole
e)	$\begin{gathered} \text { T2 }(100 \mathrm{Mpa}) \\ \text { for water } \end{gathered}$			${ }^{\circ} \mathrm{C}$

Answas Qay 76
a)

$$
\left(\frac{\partial p}{\partial T}\right)_{V}=-\left(\frac{\partial p}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{p}=-\left(\frac{1}{V K_{T}}\right)\left(V \alpha_{p}\right)
$$

hefuiln fop $\Delta T=\frac{\Delta P}{\left(\frac{\partial P}{\partial T}\right)_{V}}=\frac{99.9 \mathrm{Mra}}{1.53 \mathrm{Ma/h}}=6 \mathrm{sojK}$

$$
T_{2}=1{ }^{\circ} \mathrm{C}+65.3^{\mathrm{k}}=66.3^{\circ} \mathrm{C}
$$

b)

$$
\begin{aligned}
& \begin{array}{l}
\text { Plererr, Well ke chlenterm. } \\
d S(T, P)=\left(\frac{\partial}{\partial T}\right)_{P} d T+\left(\frac{\partial S}{\partial P}\right)_{T} d P .
\end{array} \\
& \left(\frac{\partial S}{\partial T}\right)_{p}=\frac{c_{p}}{T}\left(\operatorname{coshaling}_{c_{p}}\right. \\
& \xrightarrow{\left|\begin{array}{cc}
-5 U V \\
H & A \\
-p & G \\
\longleftrightarrow
\end{array}\right|} \\
& \left(\frac{\partial S}{\partial P}\right)_{\pi}=-\left(\frac{\partial V}{\partial T}\right)_{P}=-V \alpha_{p} \\
& \binom{\text { Mol welf }}{M \text { latanif }}\binom{\text { oohnilig }}{\alpha} \\
& d S=\frac{C_{p}}{T} d T+\left(-V_{\alpha}\right) d P
\end{aligned}
$$

Tale dencalwwot T at ou it V teget C_{V} from defrilug C_{V}

$$
\left(\frac{\partial T}{\partial T}\right)_{V}=\frac{C_{V}}{T}=\frac{C_{f}}{T}\left(\frac{\partial \partial}{\partial t}\right)_{V}-V \alpha_{p}\left(\frac{\partial P}{\partial T}\right)_{V}
$$

$$
\begin{aligned}
& \left(\frac{\partial P}{\partial T}\right)_{V}=-\left(\frac{\partial P}{\partial V}\right)_{T}\left(\frac{\partial V}{\partial T}\right)_{P}=\left(+\frac{1}{V K_{T}}\right)\left(\alpha_{P} V\right) \\
& \text { Tuild } \\
& \text { proctect } \\
& \text { Role } \\
& \left.\left(\frac{\partial I}{\partial T}\right)_{V}\right)=\frac{\alpha_{\mu}}{K_{T}} \text { use later } \\
& \frac{C_{V}}{T}=\frac{C_{P}}{T}-\frac{V \alpha_{p}^{2}}{K_{T}} \\
& c_{v}=C_{p}-\frac{V T \alpha_{p}{ }^{2}}{K_{T}} \\
& V=\frac{M \omega}{\rho}=\frac{119 \text { glaole }}{1.48 \mathrm{glcm}}=80.4 \frac{\mathrm{~cm}^{3}}{\mathrm{~mole}} \\
& C_{v}=65.8 \frac{\mathrm{~J}}{\mathrm{mbk}}-\frac{80.4 \frac{\mathrm{~cm}^{3}}{\mathrm{mll}}(274 \mathrm{k})\left(1,270 \times \times 0^{-6} \mathrm{k}^{-1}\right)^{2}}{830 \times 10^{-6} \mathrm{Maa}^{-1}} \\
& C_{v}=65.8 \frac{\mathrm{~T}}{\operatorname{modh}}-42.8 \frac{\mathrm{~J}}{\mathrm{~m}_{0} .6} \\
& C_{0}=23.0 \mathrm{~J} / \mathrm{molh}
\end{aligned}
$$

c) Calcabt $\Delta S, \Delta U \mathbb{E}$,

$$
\begin{aligned}
& d S=\frac{C_{V}}{T} d T \\
& \Delta S=C_{v} \ln \frac{T_{2}}{T_{1}}=23.0 \frac{\mathrm{~T}}{\text { mek } \mathrm{K}} \ln \frac{\left(6 C_{1} 0^{\circ}+273 \mathrm{~K}\right)}{\left(1^{\circ} \mathrm{C}+273 \mathrm{~K}\right)} \\
& \Delta S=4.92 \frac{J}{\text { m.le }} \\
& d u=C_{v} d t \\
& \Delta u=C_{v} \Delta T \\
& =23.0 \frac{\mathrm{~T}}{\mathrm{mdk}}\left(66.3^{\circ} \mathrm{C}-1^{\mathrm{c}} \mathrm{C}\right) \\
& \Delta u=1,500 \frac{\mathrm{~T}}{\text { mole }} \\
& \Delta u=Q+w_{s c}^{a} C_{y}^{4} Q_{1}^{6} \\
& Q=1,500 \mathrm{~T} / \mathrm{moll}
\end{aligned}
$$

d) $\left(\frac{\partial H}{\partial T}\right)_{v}$ Neded $\left(\underset{\sim}{n} t C_{p}\right)$
-suv H A $d H=T d S+V d P \quad$ from Ssuere $-p G T$ Tale partiol deintur w.int at

$$
\begin{aligned}
& \left(\frac{\partial H}{\partial T}\right)_{V}=T\left(\frac{\partial S}{\partial T}\right)_{V}+V\left(\frac{\partial P}{\partial T}\right)_{V} \\
& \left(\left.\frac{\partial S}{\partial T}\right|_{V}=\frac{C_{V}}{T} \quad\left(\frac{\partial P}{\partial T}\right)_{V}=\frac{\alpha_{P}}{K_{T}} \text { Pot atrup }(b)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{\partial H}{\partial T}\right)_{V}=C_{v}+\frac{\alpha_{\rho}}{K_{T}} V \\
& \left(\frac{\partial H}{\partial T}\right)_{V}=23.0 \frac{\mathrm{~T}}{\text { notk }}+\frac{1,270 \times 10^{-6} \mathrm{~K}^{-1}}{\varepsilon 30 \times 10^{-6} \mathrm{~m}_{a}} \cdot 80.4 \frac{\mathrm{~cm}^{3}}{\mathrm{nol}} \\
& \left(\left.\frac{\partial H}{\partial T}\right|_{V}=146 \frac{\mathrm{~J}}{\text { molek }}\right. \\
& \Delta H=\left(\frac{\partial H}{\partial T}\right)_{V} \Delta T=146 \frac{\mathrm{~J}}{\text { noll }}(65.3 \mathrm{k}) \\
& \Delta H=9,540 \frac{\mathrm{~J}}{\text { mole }}
\end{aligned}
$$

e)

$$
\begin{aligned}
& \Delta T_{\text {wats }}=\frac{\Delta P}{\alpha_{p} / K_{T}}=\frac{99.9 \mathrm{MPa}}{\left(210 \times 1 i^{-6 / 4 / 490 \times 10^{-}}{ }^{-N_{N i}} \cdot 1\right)} \\
& \text { fin put (a) }=\frac{99.9 \mathrm{MPa}}{0.429 \frac{\mathrm{Mr}}{\mathrm{~K}}} \\
& \Delta T_{\text {wok }}=233 \mathrm{~K} \\
& T_{2}=234^{\circ} \mathrm{C}
\end{aligned}
$$

Patein has hamed not Froiill

Question		Expression	Value	Units
a)	(cp/CT) V	α_{p} / K_{T}	1.53	$\mathbf{M P a / K}$
	T2	$\frac{\Delta P}{(P / \partial T)_{V}}+T_{1}=\frac{\Delta p}{\alpha p / k_{r}}+T_{1}$	63,3	${ }^{\circ} \mathrm{C}$
b)	Cv	$C_{V}=C_{p}-\frac{V T \alpha_{p}^{2}}{K_{T}}$	23.0	J/(mole K)
c)	DS	$C_{v} \ln \frac{T_{2}}{T_{1}}$	4.92	J/(mole K)
	DU	$C_{V} \Delta T$	1,500	J/mole
	Q	$Q=\Delta U$	1,500	J/mole
d)	DH	$\Delta T\left(C_{v}+\frac{\alpha_{f}}{K_{T}} V\right)$	9,540	J/mole
e)	$\begin{gathered} \mathrm{T} 2(100 \mathrm{Mpa}) \\ \text { for water } \end{gathered}$	$T_{1}+\frac{\Delta p}{\frac{\alpha p / K_{\tau}}{}}$	234	${ }^{\circ} \mathrm{C}$

